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scoring all trials administered (the usual practice) may not yield the best
obtainable predictive validity. Scoring only a subset of consecutive trials
(early, middle, or late) frequently yields appreciably higher predictive
validities than the conventional practice. +—uo _

"Subset analysis" serves the same ends in performance-test thaory as ftem
analysis does in conventional psychometrics. Both kinds of analysis concern
the selection of some materials for inclusion in a test and others for
exclusion, either in original development or in subsequent revision. The
difference is that item analysis focuses on individual items and subset
analysis on subsets of ordered trials.

Serial averaging and its applications (reliability and stability optima,
optimal scoring for predictive validity, and subset analysis) are explained and
{1lustrated. Results obtained using the Project-A computer-administered tests

serve as the database.
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ABSTRACT

The advent of the microcomputer has led to a renaissance in performance
testing, that is, tests which sample what a person can do (remember, track,
aim, detect, recognize, etc.) rather than what he or she knows. Psychometric
theory, however, is based on knowledge tests. The unit of analysis is an
item and the order of administering the items is arbitrary. In performance
testing the unit of analysis is a trial and order of administration is not
only nonarbitrary but often the only thing that distinguishes one trial from
another. In a knowledge test it is not unreasonable to suppose that mean
performance and interitem correlations are indenendent of order of
administration. In a performance test it is. Typically, performance
improves with practice and intertrial correlations tend toward a definite
pattern as a function of order.

The consequences of these differences for theory are drastic. In
performance testing, both reliability and temporal stability frequently
encounter optima as a test is lengthened. Hence, low reliability or
stability may not be corrigible by increasing test length. Further,
scoring all trials administered (the usual practice) may not yield the best
obtainable predictive validity. Scoring only a subset of consecutive trials
(early, wmiddle, or late) frequently yields appreciably higher predictive
validities than the conventional practice.

"Subset analysis" serves the same ends in performance-test theory as
item analysis does in conventional psychometrics. Both kinds of analysis
concern the selection of some materials for inclusion in a test and others

for exclusion, either in original development or in subsequent revision. The




difference is that item analysis focuses on individual items and subset
analysis on subsets of ordered triails.

Serial averaging and its applications (reliability and stability optima,
optimal scoring for predictive validity, and subset analysis) are explained
and illustrated. LResu]ts obtained using the Project-A computer-administered

tests serve as the database.




INTRODUCTION
The theoretical problem of performance testing

The distinction between knowiedge and performance testing turas on what

one is trying to measure. A knowledge test samples what a subject knows, a
performance test what he or she can do. Plainly, this distinction is not
absolute. A mathematics test, for example, may involve not only what a
subject knows but also what he or she can do with that knowledge. A memory
task may be facilitated if a subject has seen an unusual symbol before and
knows what it is, say, a Greek omega. Nevertheless, most tests fall
lopsidedly into one category or the other.

in a knowledge test the subject does not usually know whether the answer
that he or she has given is right or wrong. As a result practice effects are
limited to auxiliary aspects of the test (test-taking skills) and, while they
exist, are not large (Messick & Jungblut, 1981; Wing, 1980). In a
performance test, however, it is usually not possible to prevent the subject
from obtaining some idea as to how well or poorly he or she is doing. As a
consequence, subjects tend to do better on a test the more times it is
administered to them (Bittner et al, 1983; Kennedy et al, 1981). In effect,
eack test administration becomes a trial of practice.

Psychometric theory is based on knowledge tests. The upit of analysis
is an item and the order of administering the items is arbitrary. 1In
performance testing, however, the unit of analysis is a trial and order of
administration is not only nonarbitrary but often the only thing that
di;tinguishes one trial from another. In a knowledge test it is not
unreasonable to suppose that mean performance and interitem correlations are

independent of order cf administration. In a performance test it is.
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Typically, performance improves with practice, often within a session but
almost always from test to retest; variances follow the means; and intertrial
correlptions tend toward a definite pattern as a function of order, the
superdiagonal form (Jones, 1962).

The practical probiem of performance testing

During the Second World War performance testing based on
electromechanical apparatus (rotary pursuit, complex coordination, two-hand
tracking, and the like) was widely and successfully used in military
selection, especially for pilot training (Melton, 1947). The equipment,
however, was heavy, bulky, difficult to maintain, and more difficult to
replace. By the late 1950s all three military servicés had abandoned
performance testing in favor of paper-and-pencil tests exclusively. Then in
the late 1970s the advent of microcomputers reopened the possibility of
performance testing, this time with equipment that occupied little space, did
not break down frequently, and was easily replaced when it did. At the same
time, experimental psychology was undergoing a revolution of its own, as the
discipline’s central focus shifted from learning theory to cognition and
information-processing. The joint effect of these two developments was a new
generation of cognitively oriented, microcomputer-based performance tests
(Englund, Reeves, Shinglebecker, Thorne, Wilson, & Hegge, 1987; Kennedy,
Baltzley, Wilkes, & Koontz, 1989; Kyllonen & Christal, 1989).

Unfortunately, all has not been clear sailing for this new generation of
performance tests. The most serious problem has been that many tests have
low reliabilities (Kyllonen, 1985). Predictive validities against real-world
criteria are still sparse, but it seems likely that oftentimes they will also

be Tow. An appropriate response to these difficulties involves more than
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making and trying out new tests. What is needed is a theory of performance
, tests, that is, an approach to test construction and validation that
ﬁ recognizes and capitalizes upon the distinctive properties of performance
tests.
f er

The present paper develops such a theory. Its empirical base is
provided by the ten computer-administered tests in Project A (Eaton, Hansen,
& Shields, 1987; Peterson, Hough, Dunnette, Rosse, & Wing, 1990). Results
will be presented under seven headings: comparisons with Army data, practice
effects, reliability, temporal stability, sample variations, predictive
validity, and subset analysis.

TASKS, SUBJECTS, PROCEDURES

The Project-A tests

Project A is a large, multi-year effort to improve the Armed Forces
Vocational Aptitude Battery (Eaton, Hanser, & Shields, 1985; Peterson, 1987).
Included in this effort are ten newly developed, computer-administered
performance tests. Brief descriptions of the ten tests are given below. The
tests are administered in the order described. Table 1 shows the number of
ﬁ trials a subject receives on each test and, approximately, the total length
of time each test requires.

Simple Reaction YTime. The subject is instructed to place his or her
hands in the ready position. When Lhe word YELLOW appears in a display box,

the subject strikes the yellow key on the test panel as quickly as he or she
can. The dependent measure is average time to respond.

Choice Reaction Time. This test is much the same as Simple Reaction

Time. The major difference is that the stimulus in the display box is BLUE or
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WHITE (rather than YELLOW), and the subject is instructed to strike the
corresponding blue or white key on the test panel. The dependent measure is
average time to respond on trials in which the subject makes the correct
response.

Short-Term Memory. A stimulus set, consisting of 1, 3, or 5 letters or
symbols, is presented on the display screen. Following a delay period, the
set disappears. When the probe stimulus appears, the subject must decide
whether or not it was part of the stimulus set. The dependent measure is
average time to respond on trials in which the subject makes the correct

response.

Target Tracking 1. This is a pursuit tracking test. The subject’s task

is to keep a crosshair centered within a box that moves along a path
consisting exclusively of vertical and horizontal lines. The dependent
measure is the average distance from the crosshair to the center of the

target box.

Perceptual Speed and Accuracy. This test measures a subject’s ability

to compare rapidly two stimuli presented simultaneously and determine whether
they are the same or different. The stimuli may contain 2, 5, or 9
characters and the characters may be letters, numbers, or other symbols. The
dependent measure is average time to respond on trials where the subject’s
response is correct.

Jarget Tracking 2. This test is the same as Target Tracking 1, except
that the subject uses two sliding resistors instead of a joystick to control
the crosshair. The dependent measure is the same as in Target Tracking 1.

Number Memory. The subject is presented with a number on the computer

screen. When the subject presses a button, the number disappears and another
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number appears along with an operation term (e.g., "Add 9" "Multiply by 3").

When the subject presses: a button, another number and operation term are
presented: This pfbcedure continues until finally a solution to the problem
is presented. The subject must then indicate whether the solJution presented
is correct or incorrect. The dependent measure is total time to respond on
trials in which the subject correctly identifies the solution presented as
correct or incorrect.

Cannon Shoot. The subject’s task is to fire a shell from a stationary
cannon so that it hits a target moving across the cannon’s line of fire. The
dependent measure is a deviation score indicating the difference between time
of fire and optimal fire time (for example, direct hit yields a deviation
score of zero).

Target Identification. The subject is presented with a target and three
stimulus objects. The objects are pictures of tanks, planes, or helicopters.
The target is the same as one of the three stimulus objects but rotated or
reduced in size. The subject must determine which of the three stimulus
objects is the same as the target object. The dependent measure is average
time to respond on trials in which the subject makes the correct response.

Isrget Shoot. The subject’s task is to move a crosshair over a moving
target and then press a button to fire. The dependent measure is distance
from the crosshair to the center of the target when the subjec* fires.

rion K

In addition to the Project-A tests, each subject was administered a
criterion task. This task was Anti-Aircraft, game #1 in the Atari Air-Sea
Battle cartridge (CX-2624). In this game the subject controls a gun placed
two thirds of the way from left to right at the bottom of the television
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screen. Four different kinds of aircraft traverse the screen above the gun,
in different numbers, at different speeds and altitudes, and from left to
right or vice versa., The purpose of the game is to shoot down as many
aircraft as possible in a 2-min-and-16-sec game. The control devices are a
Joystick for positioning the gun and a button for firing the missile. The
missile itself was the smaller of two possible sizes (difficulty position
"A"). The dependent measure is number of aircraft shot down per game.

Anti-Aircraft is a complex psychomotor skill with a high ceiling. No
subject comes close to reaching the maximal possible performance with the
amount of testing given.

Sybjects and procedures

The subjects were two independent samples of undergraduate students at
central Pennsylvania colleges. Both samples numbered 102 subjects, 50 men
and 52 women in Sample A and 49 men and 53 women in Sample B. The two
samples were collected at the same colleges two years apart, Sample A in
1988-89 and Sample B in 1990-91. Design and procedures were identical in the
two samples.

Each subject was administered the Project-A tests at the start of the
fall semester (September, October) and then again four months later at the
start of the spring semester (January, February). The Project-A tests were
taken in a single sitting that lasted between 45 and 75 mins, depending on
how quickly the subject responded to the tests and the instructions that
preceded them. The entire administration, both test and retest, instructions
as well as the tests themselves, was computer-controlled.

In the fall, following the Project-A tests, each subject was

administered five sessions of Anti-Aircraft, each session consisting of seven




P el

9
games or a little less than 16 mins of playing time. A1l five sessions were
completed within a ten-day period, with no more than two sessions taking
place on a given day. In the spring semester, again following the Project-A
tests, each subject was given three sessions of Anti-Aircraft with the same
number of games per session and the same conditions as to distribution as in
acquisition. ‘

COMPARISONS WITH ARMY DATA

Table 2 compares the present results (Sample A) with those collected by
Peterson, Hough, Dunnette, Rosse, Houston, Toquam, and Wing (1990) in
overlapping samples of Army enlisted people ranging in number from 8,892 to
9,269, depending on the test. The tests were scored the same way at Hershey
as in the Army, that is, a subject’s score on any given test is the average
of his or her score on all trials administered.

The college students perform better on all tests, but some of the
differences are sizable whereas others are trivial. The largest differences
are for the two memory tests, in both cases half a standard deviation (s) or
more. The next largest differences are for the two "perceptual” tests
(Perceptual Speed & Accuracy and Target Identification), approximately .4s.
The differences for Choice Reaction and the two tracking tests are
approximately .33s, while those for Simple Reaction and the two aiming tests
(Cannon Shoot and Target Shoot) are less than .2s. Thesa differences are
broadly what one would expect; the more "cognitive" a test is the larger the
difference in favor of the students tends to be.

Variabilities were greater in the Army than in the Hershey data, except
for Target Tracking 2, but not greatly so, except for Simple Reaction. The

variance of Simple Reaction is nine times as large among the enlisted people
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as among the students. Sizple Reaciion ic the Tirst test in the battery, and
there may have been some confusion ameng the Army subjects as to what they
were supposed to do. If so, it would explain the high variability of Simple
Reaction ia the Army data.

The column headed "Reliability” coniains, for the Army data, cdd-even
correlations corrected for test length by the Spsarman-Brown formula and, for
the Hershey data, Spearman-Brown projections froa the average correlation
involving all trials. Thus, both figurss caks use of all trials administered
and both use the Spearman-Brown forzula. The correspondence between the two
sets of figures is startingly close.

The column headed "Temporal Siability" contains two-wzek test-retfest
correiations for the Army data and four-month test-retest correlations for
the Hershey data. Temporal stability was better at Hershey than in the Army
for all tests except Target Identification and may have been better even for
Target Identification, given that the retest interval was eight times as long
at Hershey as in the Army.

There are at least four subject cr procedural differences that may have
contributed to the better stability at Hershey. First, of course, was the
difference in population: college students versus enlisted people. Second,
the sex ratio at Hershey was essentially 50-50, whereas males predominated in
the Army sample. Third, the Hershey tests were administered by a sing’e,
very experienced person, whereas the Army data were collected at many places
by many people, some of them not experienced test administrators. Fourth,
the Hershey subjects were tested one or two at a time, whereas the Army

subjects were tested in batches of as many as two or three dozen at a time.
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In generai, howsver, the differences beiwsen the two arreys of stability
results are not large. The low stebility for Sicple Reaction in the Army
data is probably related to that test’s high variability. No obvious
explanation exists for the low stability of Target Shoot in the Army sample,
except perhaps that Target Shoot is the last test in the battery.

PRACTICE EFFECTS

Practice effects occur regularly in performance tests and in several
different forms. Figure 1 illusirates the cost cozzon effect. The figure
presents mean results for the two tracking tests in Sanple A at test and
retest. The means in Figure 1 arz not mesans of individual trials. The score
for a given subject at trial i is the average of his or her scores up to and
including that trial, what I will call a “forward average.” The means in
Figure 1 are means of forward averages. Forward averaging is done separately
within test and retest sessions.

The first trial in both tests happens to be easy. Hence, the mean error
score is smail initially for both tests. Thereafter, however, mean
performance shows 1ittle change. There is, however, a marked and highly
significant fall-off (p<.001) from test to retest for both tasks. If one
compares the final points at test and retest, that is, the averages of all
trials administered, the subjects perform better at retest than at test on
all ten tests in the Project-A battery and in five of the ten tests the
difference is signifi:ant at the .01 level or better, taking both samples
into account.

A second effect, also evident in Figure 1, is that the differenze
between test and retest is generally larger in the early trials than later

on. In Target Tracking 1, for example, the difference for Trial 1 is .24 log
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uniis and for the first two trials .20. At the end of practice, the averages
for all 18 trials, the difference is .14 log units. These figures are
representative. In a typical case the subjects’ initial performance is
markedly better at retest than at test, but the differsnce narrows with
continued testing. A plausible interpretation is that the subjects learn how
to respond from their first exposure and this learning gets them off to a
better sfﬁrt at retest but does not help them as much or, perhaps, at all
after the first few trials.

Trials on Memory fall into three subsets, according to size of the
stimulus set. In 12 of the trials the set consists of a single stimulus, in
12 others of three stimuli, and in the remaining 12 trials of five stimuli.
In all 36 trials the subject is subsequently presented with a probe stimulus
and asked to indicate whether or not it was included in the stimulus set.
Figure 2 presents mean results for the three subsets of Memory at test and
retest in Sample A. Again, each individual’s score is a forward average,
that is, the average of his or her scores up to the trial indicated.

Mean performance for all trials improves from test to retest for all
three subsets but the difference is significant only for Subset 3. The
difference for Trial 1, however, is significant at the .01 level for Subsets
3 and 5 and at the ,05 level for Subset 1. These effects have already been
noted as typical of performance tests in general. Memory, however, shows two
additional effects that are seen on’y in some tests.

The curve for Subset 3 decreases significantly (p<.01) from Trial 4 to
Trial 12 at test, and this decrease recurs in Sample B (p<.01). In the case,
therefore, of this subset it would appear that there is evidence for learning

within the test session as well as between it and the retest session. The
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curve for Subset 1 decreases nonsignificantly from Trial 4 to Trial 12, while
the curve for Subset 5 increases nonsignificantly over the same span of
trials.

Increasing trends are prominent at retest. The curves for Subsets 1 and
5 both increase significantly (p<.01) from Trial 4 to Trial 12 at retest and,
again, these trends recur in Sample B (p<.0i). These increasing trends are
also practice effects, although, of course, they cannot be interpreted as
evidence for learning. The most plausible interpretation is that they
reflect a practice-induced fatigue or loss of concentration, which shouid be
more prominent at retest than at test. It does appear, however, that in the
most difficult subset (5) the increase from Trial 4 to Trial 12 occurs in the
test session also. In Sample A the increase is not significant but in Sample
B it is (p<.01).

Variances, in general, follow the mean. Table 3 presents means and
variances for Memory at test and retest, broken down by sample and subset.
Individual scores are averages of all 12 trials in a subset. As can be seen,
the coefficient of variation ranges between .21 and .27 despite large
differences in the means. This observation does not mean, of course, that
practice has no effect on variances, only that these effects rarely, if ever,
contain any information additional to that contained in the means.

In studies of skill acquisition, correlations between sessions of
practice fall into a regular and highly reproducible pattern, the
superdiagonal form (Jones, 1962, 1969). The gist of this pattern is that the
closer together two sessions are in the practice sequence the stronger the
correlation between them. Neighboring sessions correlate most strongly,

while the weakest correlation is between the first and last session. How
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clearly this pattern appears depends primarily on sample size and the amount
of performance represented by a single data point. Where each data point is
based on many minutes of performance, the superdiagonal pattern is always
seen and is usually quite regular. For example, the five test sessions of
Anti-Aircraft, where each session lasts 16 minutes, show it very clearly.
Intertrial correlations between individual trials, each one lasting only a
few seconds, are another matter. The pattern may be there but in order to
show it the trials must be grouped into blocks.

Table 4 presents the intertrial correlations for Perceptual Speed and
Accuracy in Sample A at test. The trials have been grouped into blocks of
four trials each. Hence, a correlation between two different blocks is the
average of 16 intertrial correlations, while the correlation within a block
is the average of six intertrial correlations. The latter correlations
appear in the main diagonal in parentheses.

Even with blocking, the superdiagonal pattern in Table 4 is somewhat
irregular. Nevertheless, it is unmistakably present. The correlations in
the main diagonal are, on the average, larger than those in any other
diagonal. The next largest are in the superdiagonal, the next diagonal over,
containing correlations between neighboring blocks. With each successive
diagonal the correlations become smaller until one reaches the upper,
right-hand coraer, which contains the smallest correlation in the matrix,
a7,

In some tests, the two tracking tests are cases in point, the
superdiagonal pattern is very shallow. In others, for example, Cannon Shoot
and Target Shoot, the level of correlation is very low and, therefore,
individual correlations are extremely varizble. Nevertheless, shallow or

obscured by variability as it may be, superdiagonal pattern is a persistent
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feature of performance tests. It is also a practice effect. Superdiagonal
form does not necessarily reflect learning but it always reflects temporal or
sequential order. Like Tearning or loss of concentration, it is induced by
trials of practice.

Altogether, then, practice effects have been noted in five distinct
forms: mean improvements from test to retest, mean improvements within a test
session, mean deterioration within a test session, trends in variance with
practice, and intertrial correlations tending toward superdiagonal pattern.
These various effects pose many, but not necessarily insoluble problems for
performance testing. One of them concerns reliability as a function of test
Tength.

RELIABILITY

In a superdiagonal pattern the later a trial comes in the test sequence
the wesker its correlation is with a given early trial. Put differently,
intertrial correlations decrease along any row to the right. Table 5
presents a hypothetical superdiagonal pattern. As car be seen, the
correlations decrease regularly by .05 along any row to the right. This
feature of superdiagonal pattern has definite implications for reliability as
a function of test length. |

In conventional test theory the Spearman-Brown (S-B) formula (Gulliksen,
1950) states that the reliability of a test i units in length

7 ; R,

an— —

L I+ Ca-1) R,
where R1 is the reliability of a test of unit length. When i >2, R1 is taken

——

as the average correlation among the i units, that is, rs.

the bottom of Table 5 shows this average correlation--for the first two

The first row at
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trials, the first three, out to all seven trials. As is clear from the
table, these averages decrease as one moves forward from the first to the
Jast trial. Because the correlations decrease along any row to the right,
each new trial adds to the average a column of correlations lower than those
already in it; hence ?} drops a notch.

Low reliability in a knowledge test is corrigible. It may be iaborious
to do, but in principie one can always lengthen the test, while maintaining
the same average inter-item correlation, and thereby improve its reliability.
In a performance test, however,'Fi may not remain the same as the test is
lengthened; in most tests it decreases. The bottom row in Table 5 gives Ri
as calculated by the S-B formula for i = 1,..., 7. As i increases, 7} both
decreases and is more strongly amplified by the S-B formula. The
amplication, however, is negatively accelerated while, in this example, the
decrease in'7§ proceeds at a constant rate. The upshot is that Ri increases
sharply at first, reaches a maximum (at i = 4), and then decreasezs gently.

In this case, therefore, reliability would not be improved by lengthening the
test. In fact, the test could be shortened to 4 trials with no loss of
reliability.

The superdiagonal pattern in Table 1 is perfectly regular; that is,
correlations are constant within any given diagonal and regulariy decreasing
between diagonals. Superdiagonal patterns are not necessarily level,
however. In many psychomotér tests they have a tendency to rise with
practice (Reynolds, 1952) and, where this is the case, the tendency for ?} to
fall with practice may be nullified or even reversed. By the same token,
however, correlational level may also fall with practice for other reasons

than superdiagonal patterning. Fatigue or loss of concentration may manifest
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itself in corfe]ationa]‘]eve1s and. patterns as well as in mean performance.
In the presence of fatigue or wavering attention performance tends to be
fitful and erratic, which introduces novel variance not present in earlier
trials of practice. The effect is to produce a drop in correlational level
and, therefore, to bring about a reliability optimum earlier than it would
have occurred in a perfectly regular superdiagonal pattern (but see the
discussion under Comment).

Figure 3 presents reliability results for Simple Reaction. The average
correlation up to trial i (solid squares) tends to decrease sharply as i goes
from 2 to 10. A straight line has been fitted to these nine points and
extended out to trial 25. The corresponding reliabilities (solid circles)
are Spearman-Brown projections (Ri) for a test of length, i, given that a
test of unit length has reliability 71. The smooth curve for Ri was obtained
by applying the S-B formula to corresponding points, ;}, on the regression
line. The smooth curve has also been extended to Trial 25. Such a curve

reaches a maximum at

B ("“)"&,/"&
J

£
b

H

where 3 and b are the intercept and slope of the regression 1ine. In this
case i* equals 19.2. It would seem, therefore, that the reliability of
Simple Reaction could be improved by lengthening the test but only modestly.
Roughly doubling the numbar of trials would increase reliability by .02 but
still leave it at .897, wel’ short of unity. More than doubling the number
of trials would be counterproductive.

Figure 3 can be improved in two key respects. First, the regression

line in Figure 3 was obtained by weighting the ?i equally. The'?}, however,
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are based on very different numbers of correlations. For example, ?} is
based on only one correlation, whereas’?10 is based on 45. It would make
sense on strictly statistical grounds to weight the'Fi for the number of
correlations on which each one is based. It makes especially good sense when
one.remembers that the main purpose in fitting the regression line is to
predict the course that 72 will follow beyond the administered number of
trials (n). The'72 often follow a decreasing, negatively decelerated course,
Therefore, the best prediction of where‘7% will lie when i>n is the slope of
the-;} curve, not overall, but just before the administered sequence reaches
its end. Weighting the ?} for the number of correlations on which each one
is based effectively approximates such a slope. The early points are heavily
discounted in favor of the last few points. The resulting 1ine in such cases
is shallower than the one obtained by equal weighting of the ?}. Hence, the
number of trials for optimal reliability, i*, is increased (pushed further
out).

The second key improvement concerns how to estimate Rl’ The estimation
based on ¥, assumes that all trials have equal variances. If this is not so

i
(and it never is), the appropriate estimate becomes

~o Coy s
R = N, =
, 4 V&n‘.

where 3331 and VEFi are, respectively, the averages of all covariances and
variances up to trial i. In effect, ?2 weights the correlations for the
variances involved in them. Correlations between trials with large variances
count for more than correlations between trials with small variances. This
improvement has no systematic effect on i*. Sometimes it increases i* and

sometimes, as in the case of Simple Reaction, it decreases i*.

oy
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Figure 4 presents the reliability results for Simple Reaction, making
these two improvements. The net effect is to aecrease i* to 14.8 and to
reduce the optimal reliability to .874.

Table 6 presents reliability results for all ten tests, using‘;; and a
weighted regression line. For two tests (Perceptual.Speed & Accuracy and
Target Tracking 2) the regression line has positive slope (b>0). In these two
cases there is no optimal reliability short of unity. In the other eight
tests slope is negative, i* finite, and optimal reliability some value less
than unity. In five of the eight cases, however, i* is remote and, with the
exception of Number Memory, R;*, the projected optimal reliability, is not
much less than unity. In one case (Cannon Shoot), however, i*<n. That is,
the number of trials for optimal reliability is less than the number
administered. In such a case reliability cannot be at all improved by
lengthening the test. In fact, the test could be shortened without reducing
optimal reliability. In two tests, Target Shoot as well as Simple Reaction,
i* lies just five trials ahead of where the administered sequence stops. In
both cases little is to be gained by increasing the number of trials and
optimal reliability lies well short of unity.

TEMPORAL STABILITY

In temporal stability one has two sequences of trials to consider, both
test and retest, instead of just one. The procedure used in ré]iabi]ity,
howeve“, generalizes naturally to stability. For each individual one

obtains forward averages at test (i) and at retest (j) and then calculates
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the p correlations where i = j. For purposes of projection, the temporal

stability coefficient is analyzed into three components:

~ . +
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The first and third components are the S-B expansion terms, exactly as they
would appear were we calculating S-B reliability at trial i or j from the
test or retest results. Taken together, these two components are the
geometric mean of the test and retest reliabilities. The middle term, called
the "covariance ratio," is the ratio of the average covariance between test
and retest to the geometric mean of the average covariances within test and
retest. This ratio is an upper bound to temporal stability, but not a
correlation coefficient. The covariance ratio may exceed unity and often
does. When it does, of course, it is not a least upper bound because unity
is then less than it and unity is also an upper bound to temporal stability.
Finally, the decomposition of temporal stability into the covariance ratio
and the two expansion terms is exact. That is, if one calculates the
components and multiplies them together, the result is exactly the same as
calculating temporal stability directly (see Technical Note 1).

If the covariance ratio decreases as i (and j) increase, the fact is a
sufficient condition for temporal stability to reach an optimum. Figure 5
presents a case in point, Choice Reaction in Sample A. A straight line hus
been fitted to the covariance ratios, weighting each ratio for the number of
between-covariances on which it is based. For purposes of presentation, the
regression lines for ¥. and . have been contracted into a single curve,

1 J
obtained by plotting the geometric mean of corresponding points on the two
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regression lines. This one curve, it should be noted, is not in general a
straight 1ine. It should also be noted that the difference between the
geometric mean of the two expansion terms and the S-B expansion of the
geometric mean of the two regression lines is generally negligible. The
curve for temporal stability was obtained by applying the decomposition
formula for temporal stability, given above, to the fitted values f°r';i”;3’
and the covariance ratios.

The empirically obtained temporal stability for Trial 27 is indicated in
Figure 5 as a "false optimum." The point here is that if one had only the
empirically calculated stabilities, the value at Trial 27 would be larger
than any value either before or after it and might, therefore, be considered
optimal. The difficulty with so identifying an empirically obtained value is
that one could easily be capitalizing on chance. Any empirically obtained
value contains some amount of errcr., The hazard, therefore, of identifying a
value as optimal when, in fact, its "optimality" may be a chance upward
deflection is considerable. Fitting a smooth curve for temporal stability
has, of course, the merit that it allows us to project values for temporal
stability beyond where the administered sequence ends. It also has the
advantage of basing a reliability or stability optimum on the entire set of
obtained results rather than a single data point. The point where stability
reaches an optimum cannot be obtained in closed form, as can the
corresponding point for reliability. Hence, stability optima must be
obtained by numerical means. In the present case the effect is to push the
point of optimal stability from Trial 27 out to a 1ittle past Trial 45.

Decreasing covariance ratios are a sufficient but not a necessary

condition for temporal stability to reach an optimum. If ?ﬂ and'?% are
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decreasing and especially if they are low, temporal stability may still
increase to an optimum and then decrease--eyen if the covariance ratios are
rising. Figure 6 presents stability results for Target Shoot. Intertrial
correlational levels are very low, less than .10 within sessions. At these

~

levels, when r; and ?} decrease at even modest rates, the proportional drops

in the corresponding expansion terms tend to be substantial. Because
covariance ratios lie at a much higher level, in the present case, on the
order of .90, increases in the covariance ratios tend to be small
proportionally. The decomposition formula for temporal stability, however,

is multiplicative. What matters are proportional changes. Hence, it may
~~
"3
much larger absolute increases in the covariance ratios.

easily happen that small decreases in ?2 and are more than enough to match

Table 7 presents stability results for all ten tests. The retest
regression slopes (bz) are negative in eight of the ten tests. just as were
the test regression slopes (b1 in Table 6). There is, moreover, a good deal
of correspnndence between bl and b2. Simple Reaction, for exampie, has much
the most negative slope at both test and retest. Slope for tne covariance
ratios is positive in eight of the ten tests. In general, the covariance
raties tend to rise as i and j increase.

These opposing trends give rise to a rather sharp dichotomy. First,
stability reaches an optimum in five of the ten tests, and in five it does
not; reliability optima were reached in eight of the ten tests. Second, all
five of the stability optima but only three of eight reliability optima are
binding. Third, the optimal stabilities are much lower than the optimal
reliabilities. Stability, in short, seems either to reach an optimum early,

in the present sample, prior to Trial 50, or not at all. By the same token,
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the maximal stabi]it& attainable is either relatively low, in the present
sample, less than .80, or unity--in one instance, indeterminate (see the
footnote for Target Tracking 2).
SAMPLE VARIATIONS

Reliability and stability are sample statistics and, like any other
sample statistic, subject to variation from one sample to the next. How
large these variations are likely to be is best determined by deriving the
sampling distribution or, failing that, by approximating it at selected
points (specified by sample size, number of trials administered,
correlational levels, etc.) using numerical methods. Neither of these
efforts is attempted in this paper. We do, however, have two independent
samples of 102 subjects each and can, therefore, obtain a crude preliminary
notion of how much variation one may expect from one sample to the next.

Table 8 presents optimal-trial numbers for reliability and stability in
the two samples or notes that none was found. Three of the tests in Sample A
show binding reliability optima and two of these tests (Cannon Shoot and
Target Shoot) show them again in Sample B. The remaining seven tests show
more distant optima or none at all in both samples. Altogether, five of the
tests {Yarget Tracking 1 and 2, Cannon Shoot, Target Shoot, and Target ID)
show reasonably consistent results in the two samples. Two (Memory and Choice
Reaction) are moderately discrepant, and three (Simple Reaction, Perceptual $
& A, and Number Memory) sharply so.

For reasons that will be given later under Comment, temporal stability
is theoretically preferable to reliability as well as practically more
relevant. It also appears to be more consistent. Eight of the ten tests

(a11 but Perceptual S & A and Target ID) are reasonably consistent.




24
Temporal-stability curves--or reliability curves tco, for thei matter--rise
slowly to an optimum and decrease slowly after it. ¥t is not surprising,
therefore, that the precise location of an opiicuz =3y very by 10, 20, or 30
or more trials from one sazple to another. By the szz2 token, however, the
exact Jocation of the optizum does not matier a great decl. The difference
in stability (rather than trial nucbers) is sc2il, as a ruie, not more than
.01 or .02.

The optimum, for example, for Choice Rsaction in Sezple A is 45.7
trials, three times further out than in Szzple B. Yot this discrepancy makes
very little difference. Increasing the test in Satple A to 45 trials would
indeed improve its stabiiity--but by less than .01. Y¥hzt matters most is the
existence of a stability optimum. Figure 7 presenis the stability results
for Choice Reaction in Sample B. The decline in the empirically obtained
stability coefficients is apparent. Further, the similarity of this figure
and the one for Sample A (Figure 5) is striking, despite the threefold
difference in i*. Even with two samples of only 102 subjects, it seems clear
that no appreciable gain in stability can be had by increasing the length of
Choice Reaction. In its case, other approaches to increasing stability, for
example, administering the test in two or more bouts of, say, 15 trials each,
should be considered.

On the other hand, in those tests where an optimum does not exist,
stability continues to increase as i and j increase, as far as can be
projected, with no Timit other than unity. Neither of the two tracking
tests, for example, show an optimum in either sample. Their stabilities, as
we know, are already high. It would appear, however, that by increasing test

length they could both be made even more stable.
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Altogether, stability optizz tend not te exist 2t distent or remote
trials. The optimu=m either doss nost exist or is binding. Further, most
tests seem to fail consistentiy into one or the other grouping. The
probability of as much agres=ent betwsen Sazples A and B as appears in Table
8 is Tess than .09 by Fisher’s exact test. As a2 consequence, even samples of
2 few hundred subjects may be informative. If a stability optimu= does not
exist, then stability can be at least a2pprecizbly icproved by lengthening the
test. If a stebiiity opticus doss exist, then other ways of possibly
improving temporal stability should bz tried.

PREDICTIVE VALIBITY

Once a test has been constructed, it may be used to predict performance
on numerous external criteria. At this point the issue is no longer test
construction (test length) but test scoring. The usual practice is to
average all trials given. The rationzle underlying this practice is the
Spearman-Brown formula. By including all trials one maximizes reliability
and stability and, hence, predictive validity for all criteria. We have
already seen, however, that the assumptions of the S-B formula are
systematically violated in performance testing. Furthermore, there is now a
respectable body of literature to the effect that the differential content of
a task changes with practice or, in the psychometric context, that the
predictive validity of a performance test may vary from early to middle to
late trials (Fleishman & Hempel, 1954; Ackerman, 1987).

Forward averages, of course, include only some trials, specifically, the
first i, and they too may be correlated with an external criterion. When
they are, the correlations (predictive validities) always rise at first and

sometimes reach an optimum, after which they decrease. If, however, a
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forward optimum in predictive velidity exists, then averaging only those
trials up to and including the opticuz will yield z higher pradictive
validity than the usual practice. Since the differential composition of a
test may change with practice and an external criterion may be most strongly
related to those components of a test that predominate at the beginning (say)
or in the middle of a practice series, stability and validity optima do not
necessarily fall on the same trial. For the same reasons, the optimal
forward average for purposes of prediction may very from one external
criterion to another.

Averaging from the first trial forward is only one way to generate a
series of averages from a series of test trials. Another way is to average
from the last trial backwards. Backward averages may also be correlated with
an external criterion. When they are, the correlation (predictive validity)
rises at first and may reach an optimum prior to the first trial. In these
cases, as in the corresponding cases involving forward optima, averaging only
those trials up to and including the optimum (following it in the practice
series) yields a higher predictive validity than averaging all trials given.
Backward optima are especially helpful in improving a test’s validity when a
forward validity optimum also exists.

Four of the ten Project-A tests have high conventional validities when
performance four months later on the first retest session of Anti-Aircraft is
used as the criterion. The two best predictors are Target Tracking 1 and 2,
with validities of .696 in Sample A (both tests), .707 and .654 in Sample B.
Second best are the two aiming tests (Cannon Shoot and Target Shoot), with
validities of .594 and .510 in Sample A, .474 and .458 in Sample B. Serial

averaging (forward or backward) yields very small and nonsignificant
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improvements for these four tests. This resuit may not be happenstance. It
i ) could be that high correlations are less 1ikely to change with practice (or
J ) test administration) than low ones.

Validities for the remaining six tests range from .333 (Memory) and .372
(Choice Reaction) down, in Samples A and B respectively. Five of the six
tests, all but Choice Reaction, show forward optima in Sample A. The results
for three of these tests (Simple Reaction, Number Memory, and Target ID) are

presented in Figure 8. In all three cases validity follows a similar course,

. —

starting low, rising to an optimum, and then trailing off. In Target ID, for
example, averaging the first five trials only yields the best result, .306.

As more and more trials are added to the average, validity falls away until,

- [PER—

when all 36 trials are averaged, it has fallen to .196.

Three of the six tests (Choice Reaction, Memory, and Number Memory) show
backward optima in Sample A. The two memory tests show both a forward and a
backward optimum. Number Memory, for example, has a forward optimum at Trial
‘ 16 and a backward optimum at Trial 4. Two optima, however, are one too many.
Forward and backward averaging are only two out of a great many possible ways
of searching out validity optima. Aliogether there are 2" or, in the case of
228

Number Memory, possible combinations of trials. Were we to search all of

these combinations, capitalization on chance would be extreme and shrinkage
at cross-validation would also be extreme.

The most straightforward way to avoid these extremes is to 1imit the
number of series that one examines. Accordingly, in defining an optimal

validity average I have adopted the following three-step algorithm:
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1, If neither a forward nor a backward optimum exists, then the optimal
average is the average of all trials given (the conventional
average).

2, If a forward optimum exists but not a backward optimum, the optimal
average is the average of all trials from the first up to and
including the optimal trial. Similarly, if a backward optimum exists
but not a forward optimum, the optimal average is the average of all
trials from the last back to the optimal trial.

3, If both forward and backward optima exist, the average of all trials
spanned by the two optima is usually more valid than either the

* forward or backward optimum. If so, the optimal average is the
spanning average. If not, the optimal average is the more valid of
the forward and backward optima.

Implicit in this algorithm is a restriction to consecutive trials. In itself
this restriction reduces the total number of possibilities to be searched
from 2" to n(n+l)/2. Capitalization on chance is still involved, of course,
but its extent has been severely curtailed. Figure 9 illustrates the
application of the algorithm to Number Memory. The two upward-pointing
arrows mark the backward and forward optima, on the left and on the right
respectively.

Table 9 presents validity information for the six tests other than the
two tracking and the two aiming tests in Sample A. It includes: number of
trials, the optimal average as reached by the algorithm just described, the
validity of that average, the validity of the conventional average, and the
difference (A) between the optimal and conventional averages. The final two

columns contain the z-score (unit normal deviate) for & (a difference
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between two correlations sharing a common variable and based on the same

subjects) and the associated one-tailed significance level (Steiger, 1980, p.
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247, Equation 14). Three of the six tests are significant at the .05 level
and two others at the .10 level. ,

These results are for single tests. We may also ask how much difference
optimal averaging makes in the validity of best composites of the Project-A
tests. The validity of the six tests in Table 9 are representative of
real-world, job-performance validities (Ghiselli, 1966; Schmidt, Hunter, &
Peariman, 1981). If these six tests are scored in the usual way, they yield
a multiple correlation of .413. If the same six tests are scored by optimal
averages, the multiple correlation is .496. The difference between the two
multiple correlations yields a z-score of 2.03, significant at the .03
level. In short, for tests with representative validities optimal scoring
may improve the validity of a test or battery by as much as .10. 1In
practical terms, gains of this magnitude in tests designed to be used on a
mass basis for personnel assignment are important. Since, moreover, these
gains can be had "for nothing," there is no reason not to take them.

There remains, of course, the problem of capitalization on chance.
Validity optima, unlike those for reliability and temporal stability, are not
based on the entire set of results. A forward optimum, for example, is
simply a forward average with a validity greater than that of any other

forward average, spucifically including the last, that is, the average of all

trials administered. An average that meets this description could easily do
so on the basis of a chance upward deflection. The aigorithm for selecting a

] single optimum to some extend compounds this problem; and forming a multiple
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composite compounds it further. It is ﬁecessary, therefore, always to check
a validity optimum in an indépendent sample of subjects.

Table 10 presents such a check. The results are for Sample B; where the
optimal .averages are those obtained in Sample A (see Table 9) and the best
composites, both for conventional and optimal scoring, are formed using the
same weights as were found to maximize validity in Sample A. In three of the
six tests the difference A favors conventional scoring and in the remaining
three optimal scoring. The latter three differences, however, are all larger
than the three differences that went "the wrong way" and one of them, that
for Number Memory, is marginally significant, p<.08. The & for best
composites goes in the right direction but by an amount 45% Fhat in Sample A.

The directions and magnitudes of these differences are about what one
would expect and probably representative of the gains to be had by optimal
validity averaging. In absolute terms, however, gains ranging from .04 to
.09 are not large. Significance cannot be expected unless sample size and,
therefore, the power of the test are greater than they are in this study.

SUBSET ANALYSIS

The gains to be made by optimal scoring, though worthwhile, are not
large. In order substantially to improve the validity of a test its content
must be changed. In a few tests, Simple Reaction is a case in point, all
trials are the same. In such a case one can always revise the test but one
cannot distinguish any subset of trials in the existing test that has more
validity than other subsets. In most tests, however, it is possible to
distinguish such subsets. On any given trial the Project-A Memory Test, as
pointed out earlier, presents the subject with 1, 3, or 5 stimuli to be

retained in short-term memory. Accordingly, one can separate the trials of
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Memory into three corresponding subsets. Other tests involve different types
of stimuli (letters, numbers, or other symbols), moving or staticnary
stimuli, different time delays, or other parametric variations, which can be
used to separate the trials into subsets.

*Subset analysis" serves the same ends in performance-test theory as
item analysis does in conventional psychometrics. Both kinds of analysis
concern the selection of some materials for inclusion in a test and others
for exclusion, either in original development or in subsequent revision. The
difference is that item analysis focuses on individual items and subset
analysis on subsets of trials.

Implicit in this defining difference are three others which require
comment. First, in a conventional analysis items are distinguished from one
another by their relation to the criterion. Typically, one includes items
with high validity and excludes items with 1ittle or no validity.

Oftentimes, however, one does not have enough items of the first sort and
wishes to create more. But what do these items have in common with one
another apart from high individual item validity? In order to write more
such items one must have an answer to this question; one must know what kinds
of items to write. Accordingly, one conducts factor or ¢luster analysis in
an effort to characterize the valid items. Once that is done, it may be
possible to write more valid items--but not always. The problem of
accurately characterizing valid items in a conveitional analysis and then
creating more items like them is a difficult and frequently frustrating task.
In subset analysis it is no problem at all, because the subsets are
distinguished from the beginning by observable, easily noted features. If

trials with 3 stimuli are more valid than those with 1 or 5, it is a simple
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matter to draw more combinations of 3 stimuli from a previously prepared list

of suitable stimu]i;

The second major difference between item and subset analysis concerns-
capitalization on chance. In a conventional analysis the number of items
considered for inclusion in a test is usually much Targer than the number
selected. Hence, capitalizaticn on chance and consequent shrinkage at
cross-validation are pronounced. In subset analysis the number of subsets is
; usually small, not more than a handful. Hence, capitalization on chance,
while it exists, is much less of a problem.

The third difference relates to substantive theory. Item analysis is a
bitterly empirical procedure. Each item is related separately and directly
to the criterion. The only link between one item and another is a latent
and, therefore, nonmanipulable factor, an abstract idea. In subset analysis
each subset is distinguished by an observable and manipulable feature that
may well be or have been the subject of experimental study. It is this
feature that links subset analysis to cognitive science. The number of
objects, for example, that can be retained in short-term memory has been
‘ studied extensively by experimental investigators (Miller, 1956). One result
is that seven is about the limit of the normal range. Hence, sets of nine or

even seven stimuli to be retained in working memory would not discriminate

among most subjects; too few jeople would respond correctly. Hence, too,
sets of seven or more stimuli are unlikely to be either temporally stable or
predictively valid.

In Percepfua] S & A the subject is asked to compare two strings of
symbols and indicate whether or not they are the same, The strings may be

two, five, or nine stimuli in length. Accordingly, the trials of Perceptual
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S & A break down into three subsets of 12 triais each. Figure 10 presents
validity results for these three subsets in Sample A. The plotted points are
correlations between forward averages within subsets (ignoring trials in
other subsets) at test and the first retest session on Anti-Aircraft. Table
11 presents results for both samples and for temporal stability as well as
predictive validity. Each subset in Table 11 is represented by the average
of al1 12 trials in the subset.

In Sample A the simplest of the three subsets (Set 2) has the best
validity and the most compiex (Set 9) the poorest. This same ordering
reappears in Sample B and with similar spacing. In Sample A the difference
between Sets 2 and 9 yields a unit normal deviate of z = 2.06. A two-tail
test is appropriate in this case because any ordering could have been
accormodated. In addition, three subsets are involved. Applying the
Bonferroni procedure, one obtains a significance level of .15. In Sample B,
however, the directions of all differences are stipulated in advance. Hence,
though the unit normal deviate in Sample B, 1.80, is less than that in Sample
A, its significance is greater, p<.04.

Table 11 illustrates two points. The first concerns scoring for
validity. The validities for Subset 2 in Table 11 are better than the
corresponding optimal validities for Perceptual S & A in Tables 9 and 10. In
this instance, rescoring by subset analysis would have yielded a better
result than optimal averaging in the complete set of 36 trials. Even under
heavy constraints to guard against excessive capitalization on chance,
scoring for validity in performance testing is a three-step process: optimal
averaging in the set of all trials, subset analysis, and optimal averaging

within subsets.
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The second point illustrated by Table 11 is the possibility of using a

subset analysis to restructure a performance test. Since Sets 2 and 5 are
more valid than Set 9, the idea suggests itself of restructuring the test so
that it includes 18 trials of length two, 18 of length five, and none of
length nine. Such a restructured test would be expected to have a validity
with conventional scoring on the order of .28 instead of the present validity
with conventional scoring of .11. This suggestion, I will argue, should be
rejected.

Perceptual S & A is far from being the best predictor of Anti-Aircraft
in the Project-A battery. The two tracking tests and the two shooting tests
are all much more valid than it is. There may well bé, however, other
criteria, clerical criteria, perhaps, for which Perceptual S & A is the
primary predictor. It would make sense to restructure Perceptual S & A to
make it more valid for such a criterion because in that case one would be
improving the validity of the battery as a whole for that criterion. It
would not make sense in the present case. The gain for the battery as a
whole in predicting Anti-Aircraft would be at best very small; and
restructuring Perceptual S & A to predict Anti-Aircraft might easily weaken
its validity for those criteria it currently predicts better than other tests
in the battery. Any such restructuring would be almost 1iterally "penny wise
and pound foolish."

The results for temporal stability in Table 11 underscore this hazard.
In Sample A temporal stability is best for Set 9 and worst for Set 2. If
this result held generally, then by restructuring Perceptual S & A to make it
more valid for Anti-Aircraft, we would by the same stroke be making it less

stable and, therefore, probably less predictive of those criteria where it
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matters most. As it happens, the stability ordering reverses itself in
Sample B. On balance, stability probably does not vary much one way or the
other among the three subsets. Ideally, however, a restructuring\to improve
validity should improve stability as well.

Cannon Shoot provides an illustration. In both samples Cannon Shoot
predicts the Anti-Aircraft criterion about as well as it predicts itself over
the same interval of time (four months). Predictive validity in the two
samples is .594 and .474; temporal stability in the same two samples (A and B
respectively) is .534 and .545. The difference favors validity by .06 in
Sample A and stability by .07 in Sample B. The main reason, it would appear,
that Cannon Shoot doesn’t predict Anti-Aircraft better (as well, for example,
as the two tracking tests predict it) is its relatively low stability. If
the stability of Cannon Shoot could be improved, its validity for
Anti-Aircraft would likely also improve. It is possible that restructuring
Cannon Shoot to make it more stable and more predictive of Anti-Aircraft
might make it less valid for some other criteria. The vaiidity, however, of
Cannon Shoot for these other criteria would almost certainly bz less than it
is for Anti-Aircraft and less, too, than the validity of some other tests for
those same criteria. For the battery as a whole the gains from restructuring
Cannon Shoot would outweigh the losses.

The trials of Cannon Shoot differ in various ways: the position of the
cannon, the speed and direction of the target. It would be possible,
therefore, to separate trials into subsets on the basis of these variations.
There would, however, be more than a few such subsets and, as will be seen,
the main difference among trials is not so much any one of these variations

as it is the trial’s overall difficulty. Accordingly, the trials of Cannon
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Shoot were divided into three groups of 12 trials each on the basis of mean
performance at test.

Mean performance is, of course, a random variable. Hence, which trials
are the 12 most difficult and which the 12 easiest may vary from sample to
sample. In samples of even moderate size, however, this variation is Tikely
to be minor. In the present data 11 of the 12 easiest trials and 11 of the
12 most difficult trials are the same in Samples A and B; 10 of the 12
middle-difficulty trials are the same in the two samples. In large samples
there should be no variation at all from sample to sample, although even then
the distinction between grouping trials by difficulty Tevel and grouping them
by fixed parameter settings should not be lost. In any case, grouping trials
by difficulty level preserves the essential character of a subset analysis,
because the difficulty of a trial can be determined independently of
stability or validity considerations. In addition, one can easily add new
trials by reproducing the combinations of position, speed, and direction that
are known to be hard or easy in the existing tests.

Figure 11 presents validity results for the three difficulty subsets in
Sample A. Table 12 presents both validities and stabilities for the three
subsets in Samples A and B. Each subset is represented by the average of all
12 trials in the subset. In both samples Subset Hard is most predictive and
most stable, while Subset Easy is least predictive and least stable. The
differences, moreover, are large, ranging from a minimum of .149 (stability
in Sample A) to a maximum of .412 (stability in Sample B). The differences
for validity in Sample A and stability in Sample B are significant at the .02
level or better (z values of 2.89 and 3.51) even if one uses a two-tailed

test and makes the Bonferroni correction. The conclusion is clear: if Cannon
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Shoot were restructured to consist exclusively of difficult trials, its
temporal stability and predictive validity could both be improved.

When a reliability or stability optimum is projected at some point past
the end of the administered series, one cannot be sure that lengthening the
test to that point will have the desired effect until one actually does it.
Scoring for v§1idity is not conditioned on any change in the existing test
and, therefore, requires no check other than cross-validation. When a test
is restructured following subset analysis, the possibility of contextual
effects becomes a major threat. Given the results in Table 12, it seems
Tikely that Cannon Shoot restructured to consist of 36 difficult trials would
be both more valid and more stable than the éxisting test; but it may not be
so. One can only be sure after the fact.

COMMENT

The results presented in this paper constitute only the beginning of a
performance-test theory. How should the ability to perform well on a given
test be modeled? How is fairness with respect to race and sex to be
understood or lack of fairness to be detected, how are fair tests to be
constructed? How are the tests to be protected against unfair advantage
obtained by deliberate practice on the same or similar tests? These and many
other questions remain to be addressed. At this point I will develop only
one point. It concerns the greater importance of stability than reliahility
optima.

Learning or skill acquistion is one among many processes that can
produce a superdiagonal correlation pattern. Almost any series of
measurements ordered in space or time will generate correlations tending

toward superdiagonality (Jones, 1960). Suppose, then, that in a given test




38

the intertrial correlations, apert froo Giffersnces in individual baselines,
are sediated by factors that coze and go, for exz—ple, response sets,
fatigue, distractions, variations in concentrztion, and the 1ike. The cioser
two trials are the more likely it is that they wiil bz affected by the same
transient factors and, hence, covary together.

Now consider the forward averages for a given individual. Some
transient factors will improve the individual’s performance and others will
worsen it. As a result, the subject’s average performance will come more and
more to approximate his or her baseline lesvel as the test lengthens; and the
ratio of true-score to total variance (reliability) will increase
monotonically. In short, there will be no reliability optimum. This
discussion began, however, with the assumption that interirial correlations
fell into a superdiagonal pattern because of transient factors. If so, then
reliability as calculated by the Spearman-Brown formula couid reach an
optimum, even though, as has just been seen, no reliability optimum exists.

The hypothesis of superdiagonality mediated by transient factors has
other consequences, however. If the hypothesis were true, there would be no
mean change from tes: to retest. Nor would there be any stability optimum.
Covariances between test and retest do not involve transient factors and
should in the absence of enduring changes with practice be flat, while the
variances of forward averages within test or retest decrease monotonically as
J increases. Fina'ly, stability ought not to place a bound on the validity
of any test.

A1l three of these consegquences are false. Mean performance improves
from test to retest in all tests; contrary to expectation, temporal stability

reaches an optimum in five of the ten tests; and the validity of at least one
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test, Cannon Shoot, appears clearly to b2 linited by its relatively Tow
stability. The superdiagon2l patterns zzong intertrizl correlations at test
and retest cannot, therefore, be explained as resulting from transient
factors, at Teast not entirely. Such factors mey, however, still play a2 role
additional to learning or skill acquisition. That is, both learning and
nonlearning (transient) factors may bs involved.

The most direct way to handie this cozpiication is to rely primarily on
stability optima, which cannot be explained in terms of transient factors and
must, therefore, have their origins in more enduring changes with practice.
This conclusion is reinforced by a further consideration. Reliability is a
theoretical quantity, defined in terms of true-score and error variance. As
such it is open to all the vagaries of interpretation. Temporal stability,
on the other hand, is obtained empirically. VWhen, therefore, it rises to an
optimum and then decreases, as it does in Choice Reaction (Sample B), the
fact is observable.

At one level, serial averaging is a prosaic data-processing procedure.
It is based, however, on a view of performance testing that departs
fundamentally from current test theory. The gist of that departure is not to
replace one theory with another but to hybridize test theory with the study
of individual differences in skill acquisition and retention. Conventional
test theory is purely structural; time has no place in it. The study of
skill acquisition and retention, however, is processual; everything in it is
embedded in time and is, therefore, temporally ordered. Many parts of the
hybrid theory presented in this paper come from its processual component: for
example, the treatment in terms of trials, the centrality of order, or the

recognition of established regularities such as superdiagonal form. The
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overall approach is open, moreover, to further imports from the study of
skill acquisition. Where stability optima exist, a possible solution {in
addition to expanding some subsets and eliminating qthers) might be to
administer the test in two or more well-separated bouts, each containing many
fewer trials. Distribution and transfer effects, reminiscence, many possible
results from cognitive science, may ultimately find a place in a theory bf
performance testing hybridized to include performance as well as test
phenomena.

TECHNICAL NOTES
1. Average intertrial covariance within a test or retest session (EEER) may
be calculated either directly or indirectly. If all subjects get a score on
all trials, the two ways of calculating EEVk come to the same thing.
However, when the dependent variable is mean decision time on only those
trials where a subject responds correctly (as it is in five of the ten
Project-A tests), this condition is not met. When calculated indirectly,
EEVk is obtained from the formula for the variance of a forward average, that

is, S (FA- FA)*
/N-1

V(AFA = "ﬁ Fy

= (Veng + (A=) z-::w)/,gg

or
Z—OT/A = (‘%VM;A—- m‘&)/’&“/)

where var, and'EBQk represent the average trial variance and covariance up to
trial k. The merit of the indirect calculation is that when EBVk is so

obtained, the decomposition formula for temporal stability remains exact. To
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be consistent, the direct calculation is also used in making reliability
projections. _

2. Backward optima are not informative about how changes in tesi length
might affect reliability or temporal stability. A forward average of, say, 5
trials retains its meaning (refers to the same trials) regardless of how many
trials are ultimately given. A backward average of 5 trials, however, refers
to trials 6-10 if 10 trials are given and to trials 11-15 if a total of 15
trials is given. A backward average changes its meaning when the total
number of trials changes. As a consequence, no conclusion regarding changes

in test length can be drawn from a backward reliability or stability optimum.
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Table 1. Number of trials and total Tength of time for the 10 Project-A,

computer-administered tests.

Jest

Simple Reaction Time

Choice Reaction Time

Memory Test

Target Tracking 1

Perceptual Speed & Accuracy

Target Tracking 2

Number Memory

Cannon Shoot

Target Identification

Target Shoot

Number of Total

Trials Time (mins)
10 2
30 3
36 7
18 8
36 6
18 7
28 10
36 7
36 4
30 5




Table 2. Comparison of Army and Hershey results with the Project-A
computer-administered tests.1
( Army/ - Relia- Temporal

Jest/Measyre Hershey X s bility Stability
Simple Reaction Army?  31.84  14.82 .88 .23
(mean dec. time) Hershey 29.38 4.94 .88 .50
Choice Reaction Army 40.83 9.77 .97 .69
(mean dec. time) Hershey 36.54 6.48 .97 7
Memory Army - 87.72  24.03 .96 .66
(mean dec. time) Hershey 70.98 17.43 .97 .69
Target Tracking 1 Army 2.98 0.49 .98 74
(mean 1In dist. + 1) Hershey 2.77 0.43 .98 .87
Perceptual S & A Army 236.91 63.38 .94 .63
(mean dec. time) Hershey 202.42 47.10 .95 .73
Target Tracking 2 Army 3.70 0.51 .98 .85
(mean In dist. + 1) Hershey 3.45 0.52 .98 91
Number Memory Army 160.70 42.63 .88 .62
(final resp. time mean) Hershey 118.39 27.89 .81 .69
Cannon Shoot Army 43.94 9.57 .65 .52
(mean abs. time disc.) Hershey 43.80 8.52 .51 .53
Target 1D Army 193.65  63.13 .97 .78
(mean dec. time) Hershey 163.84 45.08 .95 1
Target Shoot Army 2.17 0.24 .74 .37
(mean In dist. + 1) Hershey 2.14 0.20 71 70
1 A1l times are in hundredths of a second. Logs are natural logs.

i 2 Simple Reaction in the Army battery has 15 trials. Number of trials in

; the remaining tests are the same in the Army as in the Hershey battery

) ‘
3 The Army retest results are based on overlapping samples of 468 to 487
subjects.
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Table 3. Means and standard -deviation on Memory at test and retest, broken

down by subset and sample. Individual scores are averages of all 12 trials

in a subset.
Sample Session Subset s X s/X
A Test 1 152.1 581.3 .261
| 3 192.7  749.3 .257
. 5 203.3 806.0 .252
Retest 1 147.2  575.7 .256
3 151.0  708.1 .213
5 193.8  802.5 241
B Test 1 154.2  607.2 .254
3 188.3  781.3 .241
5 234.3  869.5 .269
Retest 1 145.3 608.4 .239
3 181.1 758.7 .239
5 183.2  835.2 219




Table 4. Intertrial correlations for Perceptual Speed and Accuracy in Sample

A, test session, averaged in blocks of four trials.

Trials
1- 5- 9- 13- 17- 21- 25- 29- 33-
Irials 4 8 12 16 20 24 28 32 36
1-4 (.39) .34 .32 .23 .21 .24 .18 .22 17
5-8 (.54) .;0 .45 .34 .40 .32 .35 .31
9-12 (.43) .42 .39 42 .34 .39 .28
13-16 (.54) .44 .38 .43 .41 31
17-20 (.45) .41 41 .48 .34
21-24 (.41) .38 42 .30
25-28 (.43) 45 .38
29-32 (.50) .37
33-36

(.35)
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Table 5. Hypothetical correlations among seven trials of practice, together

-~

with the average correlation (?}) and reviability (Ri) as calculated by

the Spearman-Brown formula up to a given trial.

Trial
Irial 1 2 3 4 5 6 7
‘ 1 - 80 65 .50 35 20 05
2 . 80 65 .50 35 20
3 . 80 .65 50 35
4 - 80 .65 50
5 - .80 65
6 - .80
. ) )
; T, . 80 75 .70 65 60 55
R, .800  .889  .900  .903  .902  .900  .BO5
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Table 6. Reliability results for the ten Project-A computer-administered

tests, using pooled averages (?;)

and weighted regression (Sample A).

Jest

No. of

Memory

Trials b x 10 i* or'l

Simple Reaction 10 - 14.42 14.8 .874
Choice Reaction 30 - 1.05 195.3 .988
36 - 1.16 159.4 .977

Target Tracking 1 18 - 2.46 100.3 .992
Perceptual S & A 36 + 0.16 none 1.000
Target Tracking 2 18 + 1.69 none 1.000
Number Memory 28 - 1.21 96.2 .921
Cannon Shoot 36 - 1.09 29.9 .510
Target ID 36 - 0.50 310.9 .987
Target Shoot 30 - 1.82 33.8 704
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Table 7. 'Stability results for the ten Project A computer-administered tests

(Sample A).-

No. of  Slope x 10° R,*
Test __Trials b . ¢ % or']
Simple Reaction 10 . an.2b 4 24.3 566 1
Choice Reaction 30 - 0.9 -0.4 45.7 775
Memory 36 - 0.5 +4.1 none 1.000
Target Tracking 1 18 - 0.8 +0.7 none 1.000
Perceptual S & A 36 + 1.7 +2.4 none 1.000
Target Tracking 2 18 - 0.2 +0.0 none indet.2
Number Memory 28 - 2.8 -1.6 31.1 .670
Cannon Shoot 36 - 0.5 +1.1 43.8 .583
Target ID 36 - 0.0 +4.0 none 1.000
Target Shoot 30 + 1.8 +2.9 48.7 .762

1 b2 indicates slope for the pooled correlations at retest. For the
corresponding slope at test, see Table 6. ¢ indicates slope for the
covariance ratio.

2 The test regression line reaches unity while stability is still rising.
Hence, any "final" stability is speculative and is best put down as

"indeterminate."




Table 8. Optixal trial nuzders {i*) for }eli@bility ernd stability in Samples

A and B.
Relizbility Stability

Jest Sample A Sz=ple B Sarple A -Sewple B
Simple Reaction 14.8 133.9 24.3 26.1
Choice Reaction 195.3 X 45.7 15.2
Memory 159.4 g8e.90 nen2 rone
Target Tracking 1 100.3 81.1 none none
Perceptual S & A none 164.9 none 37.8
Target Tracking 2 none none indet. none
Number Memory 95.2 none 31.1 19.1
Cannon Shoot 22.9 64.8 43.8 74.7
Target 1D 310.9 304.1 none 60.4
Target Shoot 33.8 45.4 48.7 58.1
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Table 9. Optimal averages for the Project-A tests in predicting perforsance

in the first retest session or Anti-Aircraft (Sasple A).

: Optimal Predictive
No. of _ Average Validity
Jest __Trigls Start E&nd Opt. Conv. o y 4 D
Simple Reaction 10 1 6 .299 .251 .048 1.47 <.08
Choice Reaction 30 - 28 36 .162 .117 .045 0.84 n.s.
Memory 36 6 19,291 .237 .054 2.06 <.02
Perceptual S & A 36 1 9 .222 .107 .115 1.52 «<.07
Number Mesmory 28 4 16 .406 .333 .073 2.05 <.03

Target ID 36 1 5 .306 .196 .110 1.94 <.03




Table 10. Cross-validation results for the six tests with optimal averages

and their best Tinear compesite (Sample B).

Jest

Memory

Composite
Opt. Conv. A
Simple Reaction 211 .251 -.040
Choice Reaction .424 372 +.052
.347 .349 -.002
Perceptual S & A .230 174 +.056
Number Memory .296 .210 +.086
Target ID .298 314 -.016
Best Composite .3893 .356 +.037

—



trials in the subset.

A

Table 11. Subset analysis for Perceptual S & A in two independent samples of

102 subjects each. Each subset is represented by the average of all 12

Sample
Result A B
! Predictive vaiidity:
Subset 2 .231 .267
Subset 5 177 .225
Subset 9 .055 .101
Temporal stability:
. Subset 2 .590 .694
Subset § .633 .612
; Subset 9 724 609
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Table 12. Subset analysis for Cannon Shoot in two independent samples of 102

the subset.

subjects each. Each subset is represented by the average of all 12 trials in

Sample
Result A B
Predictive validity:
Easy 12 .263 243
Average 12 .331 .334
Hard 12 .565 .395
Temporal stability:
Easy 12 .295 .160
Average 12 .398 .323
Hard 12 .444 572
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